CoreML for Stable Diffusion

Analysis and Investigation

David Yuchen Wang

Sept 12, 2023

Overview

- Quick Introduction to Stable Diffusion
- Project Goal and mobile Deployment Pipeline
- Initial tests on macbook
- Deployment to mobile
 - Optimization techniques
 - Testing results
 - SD v1-5
 - SD v2-1
 - SD XL
- Comparisons
- Live Demo
- Conclusion & Next Steps

Stable Diffusion – Simplified Explanation

- Latent diffusion model
 - Utilizes a variational autoencoder to compress an image into a smaller latent space
- UNet as noise predictor
 - Generate a random image, add some noise, and have UNet predict the amount of noise
 - For inference, use random noise, and after subtraction will give "generated image"

Stable Diffusion – Simplified Explanation

- Text Conditioning on the UNet
 - Text embeddings fed into UNet via a crossattention mechanism
 - Network learns to associate latent image features with text embedding features
- Inference:
 - Random noise encoded to latent space
 - Latent noise iteratively subtracted using UNet with text-conditioning
 - Final latent vector decoded to form generated image

The model: Stable Diffusion v1.5

- Text embeddings from OpenAI CLIP ViT-L/14 text-encoder
- Training:
 - 595,000 steps from v1.2 checkpoint
 - LAION-aesthetics v1 5+ dataset, originally on LAION-5B
 - 10% dropping of text-conditioning

ero 👗 Community - 🕼 Academy - 📦 Al Models - 🚔 Jobs 🛶 - 🛊 Go Pro

Want to learn how to create images like this one? Check out our crash course in prompt engineering & AI art generation!

Fray posted 25 days ago 63 views 🗣 0 comments ≙ ☆

GENERATION PARAMETERS ©

MODEL USED

DOMDT CATEGODY

My iPhone – specs

• iPhone 13 pro max

A15 Bionic chip New 6-core CPU with 2 performance and 4 efficiency cores New 5-core GPU New 16-core Neural Engine

• 6 GiB of RAM

Deployment pipeline

Following https://github.com/apple/ml-stable-diffusion

- Install repository and dependencies
- Download SD model checkpoints (pytorch)
- Convert to Core ML model files (.mlpackage)
- Deploy models on iPhone (iOS 17-beta) using xCode 15-beta
- Deploy model using apple's StableDiffusion library in Swift, and achieve optimization with CPU + NeuralEngine

Initial Exploration

- Logbook and notes at Notion site: <u>https://stump-milkshake-736.notion.site/Stable-Diffusion-Mobile-Generation-54bdfc96383f45d7992d164ea62b38ab?pvs=4</u>
- First tried to run SD model on my MacBook Pro (M1)

Running SDv1-5 on MacBook M1

"An image of a squirrel in Picasso style"

"Macro photography of dewdrops on a spiderweb"

"Underwater photography of a coral reef, with diverse marine life and a scuba diver for scale"

Many ways to run on Mac

- Hugging face diffusers pipeline (python)
- Apple ml-stable-diffusion swift pipeline
- Image generation takes around 0.6s per iteration

Moving on to mobile

- Apple recommends techniques for optimizing models for deployment on iPhone/iPad
- Very memory intensive (only 6GiB RAM on iPhone 13 pro)
- After initial exploration:
 - Must update to iOS 17 beta on iPhone
 - Built custom app using Xcode 15 beta

Palettization technique

- Clusters weights in model to a lookup table
- Reduces size of weights.
- Decompressing palettized weights happen "just in time" on iOS 17 +, leading to enhanced latency

Accelerating Transformers with NeuralEngine

- Apple Neural Engine (ANE)
 - Specialized operations on Tensors to enhance performance
- Chunks input tensors
- Use batched matrix multiplication (einsum formula) to avoid extra memory copying

Stable diffusion 1.5 model

- Total size 0.957 GiB
- 6 bit palettization
- Using split-einsum v2

🗸 💼 sdv1-5-palettized-split-einsum-v2					
1	merges.txt	525 KB			
-	TextEncoder.mlmodelc	140.1 MB			
-	Unet.mlmodelc	648.2 MB			
-	VAEDecoder.mlmodelc	99.2 MB			
-	VAEEncoder.mlmodelc	68.5 MB			
	vocab.json	862 KB			

Generation of one image using sdv1-5

- Peak memory usage: 5.04 GiB
- Peak CPU usage: 440%

Sdv1-5 image generation

- Initial loading of model takes around 120s
- Afterwards, model loading takes around 3.5s
- Image generation takes ~ 0.75s / step

Stable Diffusion 2.1 model

- Total size 1.14 GiB
- 6 bit palettization
- Using split-einsum v2

sdv2-1-palettized-split-einsum-v2				
merges.txt	525 KB			
TextEncoder.mlmodelc	319.3 MB			
Unet.mlmodelc	653.1 MB			
VAEDecoder.mlmodelc	99.2 MB			
VAEEncoder.mlmodelc	68.5 MB			
📄 vocab.json	862 KB			

V2.1 stats

- Peak memory usage 5.06 GiB
- Peak CPU usage around 420%

		🖻 📗 📘 Davi	📗 🚦 David's iPhone (17.0) 🔪 🌍 CoreDiffuse		ise Ri	Run 1 of 1 00:03:25			0	
	Ē				All Tracks	CPUs	Threads	GPUs	GPU Counters	
		01:30.000		02	2:00.000			02:30.0	00	03:00.55
~		Metal Application		Encoder Time						
9		GPU Instrument		A15					1 channels a	ictive (200.31 ms)
•		Time Profiler		CPU Usage			la talilatu		na na la	99.3% (10.00 ms)
•		Core ML		Activity Data Compute	Load (prepar	re Lo			Load (cached): Unet-3 (2.43 s)
•		Neural Engine		Neural Engine					Neural Engine Pr	ediction (6.88 µs)
۲		Activity Monitor		Memory Used						5.07 GiB (1.01 s)
		Instrument		Cached Files		_			4	12.88 MiB (1.01 s)
			Cor	mpressed Memory			_			1.35 GiB (1.01 s)
				Swap Used					F	256.00 KiB (1.01 s)
=		A15								
-		Metal Device		State					1 channels a	ictive (200.31 ms)
		Metal Shader Compi Shader Compiler	ler							
		GPU Performance St Metal Device	ate	A15					Min	imum (100.76 ms)
		CPU 0 CPU Index Efficience		CPU Usage						
		CPU 1 CPU Index Efficience		CPU Usage						
		CPU 2 CPU Index Efficience		CPU Usage						
		CPU 3 CPU Index Efficience		CPU Usage						
Sy:	System CPU Summary ≎									
		Start Time 🔥	Duration	Total Load %	User Load S	% Syste	m Load %	Thr	eads	
	-	03:07.114.915	1.04 S	415.5%				1,	660	
	(03:08.153.878	1.01 s	405.9%				1,	,703	
	(03:09.164.932	1.07 s	403.8%				1	709	
		3:10.231.623	1.02 s	422.5%				1	719	
	,	3-11.248.477	1.04 S	406.8%				1	707	
	ć	3:13.299.411	1.04 s	315.0%				1	.672	
			1.04 5	0.0.0						

Image Generation with v2-1

- Model loading around 120s for the first time
- Successive loading takes around between 1.5 to 4.0s
- Image generation takes around 0.75s / step (but slightly faster than 1.5)

guidance 7.5

SDXL models

- Total model size 3.36 GiB
- Not yet supported in CoreML
- Options for 6bit, 4.5bit, and 3.6bit palettization

E5RT encountered an STL exception. msg = MILCompilerForANE error: failed to compile ANE model using ANEF. Error=_ANECompiler : ANECCompile() FAILED.

E5RT: MILCompilerForANE error: failed to compile ANE model using ANEF. Error=_ANECompiler : ANECCompile() FAILED (11)|

🗸 🚞 sdxl-base-mbp-4-50-palettized	
📄 merges.txt	525 KB
TextEncoder.mlmodelc	246.3 MB
TextEncoder2.mlmodelc	1.39 GB
Unet.mlmodelc	1.45 GB
VAEDecoder.mlmodelc	198.1 MB
VAEEncoder.mlmodelc	68.5 MB
🔹 vocab.json	862 KB

Model crashes

- https://github.com/apple/ml-stable-diffusion/issues/228
 - Issue not yet resolved, the apple coreml team is currently working on the official release
 - <u>https://github.com/apple/ml-stable-diffusion/issues/255</u>
- To achieve optimization using CoreML (on Mac) requires upgrading to OS 14 beta

Raised error to ml-stable-diffusion github

- <u>https://github.com/apple/ml-stable-diffusion/issues/255</u>
 - Response: split-einsum conversion for xl models is not currently supported
 - Apple team is currently working on resolving the issue, should be available soon

Avidw0311 changed the title CoreML sdxl-v1-base-palettized fails on deployment to iPhone with errorE5RT:
MILCompileForANE error: failed to compile ANE model using ANEF. Error=_ANECompiler : ANECCompile() FAILED (11)
CoreML sdxl-v1-base-palettized fails on deployment to iPhone with error E5RT: MILCompileForANE error: failed to
compile ANE model using ANEF. Error=_ANECompiler : ANECCompile() FAILED (11) 8 hours ago

(:)

atiorh commented 6 hours ago

Collaborator ···

This is related to #242 as cpuAndNeuralEngine is meant to be used with a SPLIT_EINSUM (or SPLIT_EINSUM_V2) model whereas the model you linked to is an ORIGINAL model which is meant for cpuAndGPU. We will share some instructions on this soon.

}	SaladDays831 commented 3 weeks ago		
	Is it possible to convert SDXL withattention-implementation SPLIT_EINSUM_V2 to use with cpuAndNeur	alEngine?	
	Using this command from Model conversion works fine		
	python -m python_coreml_stable_diffusion.torch2coremlconvert-unetconvert-vae-decoderc	convert-text	<u>ר</u> סנ
	But when changingattention-implementation to SPLIT_EINSUM_V2 - it hangs on Running MIL default	t pipeline.	
	python -m python_coreml_stable_diffusion.torch2coremlconvert-unetconvert-vae-decoderc	convert-text	_ >(
	It was hanging on 84% for ~4h but I still decided to leave it overnight. In the morning the process was term "Your system has run out of application memory"	inated with a	
	9		
	atiorh commented 3 weeks ago	Collaborator	
	This is not yet possible but I will ping this thread when it is $oldsymbol{\lambda}$		
	(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		

V1.5 vs V2.1

- Similar speed of image generation, v2.1 slightly faster
- V2.1 model size larger (1.14 GiB vs 0.957 GiB)
- V2.1 performs better with negative prompts
- Both only support 512x512 px image generation (for now)

1.5 and 2.1 model performance still very fast

• Comparison to Draw Things App

30 steps of image generation on sd1.5 takes ~ 80s

Reflection

- Challenging project
 - Lack of resources/documentation on newest CoreML features
 - No prior experience with Swift or Apple app development
 - Very early-stage development, only compatible with iOS 17 beta, xcode 15 beta, and OS 14 beta
 - Lack of storage space on Mac after trying and downloading many models
- Deployed and investigated performance of stable diffusion v1-5, v2-1, and xl models on iPhone 13 pro max, accelerated with coreml and apple neural engine

Next Steps / Future work

- Investigate crash errors of loading xl model on coreml, and attempt to resolve
- Investigate full memory usage of running models, and further optimize performance.
- Extensively compare performance between different palettized models.
- Integrate LoRA checkpoints onto of sd models, optimized via coreml
- Better app UI and deployment
- Allow use of control-net

seed 41,847 guidance 7.5 iterations 50

> Model loaded in 3.649035s Image generated in 24.040052 s

Project repo:

https://github.com/davidw0311/CoreDiffuse

References

- <u>https://github.com/apple/ml-stable-diffusion</u>
- <u>https://github.com/huggingface/swift-coreml-diffusers</u>
- <u>https://github.com/madebyollin/maple-diffusion</u>
- <u>https://github.com/ynagatomo/ImgGenSD2</u>
- <u>https://jalammar.github.io/illustrated-stable-diffusion/</u>
- <u>https://liuliu.me/eyes/stretch-iphone-to-its-limit-a-2gib-model-that-can-draw-everything-in-your-pocket/</u>
- <u>https://arxiv.org/pdf/2112.10752.pdf</u>
- <u>https://machinelearning.apple.com/research/stable-diffusion-coreml-apple-silicon</u>