
CoreML for Stable Diffusion 
Analysis and Investigation

David Yuchen Wang
Sept 12, 2023

1



Overview

• Quick Introduction to Stable Diffusion
• Project Goal and mobile Deployment Pipeline
• Initial tests on macbook
• Deployment to mobile

• Optimization techniques
• Testing results

• SD v1-5
• SD v2-1
• SD XL

• Comparisons
• Live Demo
• Conclusion & Next Steps

2



Stable Diffusion – Simplified Explanation

• Latent diffusion model
• Utilizes a variational autoencoder to 

compress an image into a smaller 
latent space

Ref: (https://stable-diffusion-art.com/how-stable-diffusion-work/#Stable_Diffusion_model)

• UNet as noise predictor
• Generate a random image, add some 

noise, and have UNet predict the 
amount of noise
• For inference, use random noise, and 

after subtraction will give “generated 
image”

3



Stable Diffusion – Simplified Explanation

• Text Conditioning on the UNet
• Text embeddings fed into UNet via a cross-

attention mechanism
• Network learns to associate latent image 

features with text embedding features

• Inference:
• Random noise encoded to latent space
• Latent noise iteratively subtracted using UNet 

with text-conditioning
• Final latent vector decoded to form generated 

image

4



The model: Stable Diffusion v1.5

• Text embeddings from OpenAI CLIP ViT-L/14 text-encoder
• Training:
• 595,000 steps from v1.2 checkpoint
• LAION-aesthetics v1 5+ dataset, originally on LAION-5B
• 10% dropping of text-conditioning

5



Project Goal

6



My iPhone – specs

• iPhone 13 pro max

• 6 GiB of RAM

7



Deployment pipeline

Following https://github.com/apple/ml-stable-diffusion
• Install repository and dependencies
• Download SD model checkpoints (pytorch)
• Convert to Core ML model files (.mlpackage)
• Deploy models on iPhone (iOS 17-beta) – using xCode 15-beta
• Deploy model using apple’s StableDiffusion library in Swift, and 

achieve optimization with CPU + NeuralEngine 

8



Initial Exploration

• Logbook and notes at Notion site: https://stump-milkshake-
736.notion.site/Stable-Diffusion-Mobile-Generation-
54bdfc96383f45d7992d164ea62b38ab?pvs=4
• First tried to run SD model on my MacBook Pro (M1)

9

https://stump-milkshake-736.notion.site/Stable-Diffusion-Mobile-Generation-54bdfc96383f45d7992d164ea62b38ab?pvs=4
https://stump-milkshake-736.notion.site/Stable-Diffusion-Mobile-Generation-54bdfc96383f45d7992d164ea62b38ab?pvs=4
https://stump-milkshake-736.notion.site/Stable-Diffusion-Mobile-Generation-54bdfc96383f45d7992d164ea62b38ab?pvs=4


Running SDv1-5 on MacBook M1

"An image of a squirrel in 
Picasso style”

"Macro photography of 
dewdrops on a spiderweb”

“Underwater photography of a 
coral reef, with diverse marine life 
and a scuba diver for scale”

10



Many ways to run on Mac

• Hugging face diffusers pipeline (python)
• Apple ml-stable-diffusion swift pipeline 
• Image generation takes around 0.6s per iteration

"a photo of an astronaut riding 
a horse on mars"

11



Moving on to mobile

• Apple recommends techniques for optimizing models for deployment 
on iPhone/iPad
• Very memory intensive (only 6GiB RAM on iPhone 13 pro)
• After initial exploration:
• Must update to iOS 17 beta on iPhone
• Built custom app using Xcode 15 beta

12



Palettization technique

• Clusters weights in model to a lookup table
• Reduces size of weights.
• Decompressing palettized weights happen 

“just in time” on iOS 17 +, leading to 
enhanced latency

Ref: https://coremltools.readme.io/docs 13



Accelerating Transformers with NeuralEngine

• Apple Neural Engine (ANE)
• Specialized operations on Tensors to enhance 

performance

• Chunks input tensors
• Use batched matrix multiplication (einsum 

formula) to avoid extra memory copying

14



Stable diffusion 1.5 model

• Total size 0.957 GiB
• 6 bit palettization
• Using split-einsum v2

15



Generation of one image using sdv1-5

• Peak memory usage: 5.04 GiB
• Peak CPU usage: 440%

16



Sdv1-5 image generation
• Initial loading of model takes around 120s
• Afterwards, model loading takes around 3.5s
• Image generation takes ~ 0.75s / step

17



Stable Diffusion 2.1 model

• Total size 1.14 GiB
• 6 bit palettization
• Using split-einsum v2

18



V2.1 stats

• Peak memory usage 5.06 GiB
• Peak CPU usage around 420%

19



Image Generation with v2-1
• Model loading around 120s for the first time
• Successive loading takes around between 1.5 to 4.0s
• Image generation takes around 0.75s / step (but slightly 

faster than 1.5)

20



SDXL models

• Total model size 3.36 GiB
• Not yet supported in CoreML
• Options for 6bit, 4.5bit, and 3.6bit palettization

21



Model crashes

• https://github.com/apple/ml-stable-diffusion/issues/228
• Issue not yet resolved, the apple coreml team is currently working on the 

official release
• https://github.com/apple/ml-stable-diffusion/issues/255

• To achieve optimization using CoreML (on Mac) requires upgrading to 
OS 14 beta

22

https://github.com/apple/ml-stable-diffusion/issues/228
https://github.com/apple/ml-stable-diffusion/issues/255


Raised error to ml-stable-diffusion github

• https://github.com/apple/ml-stable-diffusion/issues/255
• Response: split-einsum conversion for xl models is not currently supported
• Apple team is currently working on resolving the issue, should be available 

soon

23

https://github.com/apple/ml-stable-diffusion/issues/255


V1.5 vs V2.1
• Similar speed of image generation, v2.1 slightly faster
• V2.1 model size larger (1.14 GiB vs 0.957 GiB)
• V2.1 performs better with negative prompts 
• Both only support 512x512 px image generation (for now)

24



1.5 and 2.1 model performance still very fast

• Comparison to Draw Things App

30 steps of image 
generation on 
sd1.5 takes ~ 80s

30 steps of image 
generation on 
sd1.5 takes ~ 20s

4x speedup!
25



Reflection

• Challenging project 
• Lack of resources/documentation on newest CoreML features
• No prior experience with Swift or Apple app development
• Very early-stage development, only compatible with iOS 17 beta, xcode 15 

beta, and OS 14 beta
• Lack of storage space on Mac after trying and downloading many models

• Deployed and investigated performance of stable diffusion v1-5, v2-1, 
and xl models on iPhone 13 pro max, accelerated with coreml and 
apple neural engine

26



Next Steps / Future work

• Investigate crash errors of loading xl model on coreml, and attempt to 
resolve
• Investigate full memory usage of running models, and further 

optimize performance.
• Extensively compare performance between different palettized 

models.
• Integrate LoRA checkpoints onto of sd models, optimized via coreml
• Better app UI and deployment
• Allow use of control-net

27



Goal? 
?

28



Project repo: 

https://github.com/davidw0311/CoreDiffuse

29



References

• https://github.com/apple/ml-stable-diffusion
• https://github.com/huggingface/swift-coreml-diffusers
• https://github.com/madebyollin/maple-diffusion
• https://github.com/ynagatomo/ImgGenSD2
• https://jalammar.github.io/illustrated-stable-diffusion/
• https://liuliu.me/eyes/stretch-iphone-to-its-limit-a-2gib-model-that-can-

draw-everything-in-your-pocket/
• https://arxiv.org/pdf/2112.10752.pdf
• https://machinelearning.apple.com/research/stable-diffusion-coreml-

apple-silicon

30

https://github.com/apple/ml-stable-diffusion
https://github.com/huggingface/swift-coreml-diffusers
https://github.com/madebyollin/maple-diffusion
https://github.com/ynagatomo/ImgGenSD2
https://jalammar.github.io/illustrated-stable-diffusion/
https://liuliu.me/eyes/stretch-iphone-to-its-limit-a-2gib-model-that-can-draw-everything-in-your-pocket/
https://liuliu.me/eyes/stretch-iphone-to-its-limit-a-2gib-model-that-can-draw-everything-in-your-pocket/
https://arxiv.org/pdf/2112.10752.pdf
https://machinelearning.apple.com/research/stable-diffusion-coreml-apple-silicon
https://machinelearning.apple.com/research/stable-diffusion-coreml-apple-silicon

