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Abstract

This project proposes a Stacked Vector-Quantized Variational Autoencoder (SVQVAE) model for the task of classification on the
WBC dataset of microscopic white blood cells. The proposed model utilizes a stack of Vector Quantized Variational Autoencoders
to first perform high compression of the image space into a lower dimensional embedding space. This is done in an unsupervised
manner by training the model on reconstruction on an unlabeled dataset. Then, the classification task is performed from the
embedding space by further finetuning with a labeled dataset. The model is able to take advantage of unlabeled data for pretraining
through learning effective reconstruction. Further experiments show the model also has the capabilities to learn from a very small
subset of data, as well as enhancing performance when additional masked data is provided.

1. Introduction

Many medical diagnoses and treatments rely on the accurate
detection and identification of various blood cells. In partic-
ular, the ability to differentiate and count the different white
blood types play an important role in the decisions related to
the treatment of disease [6]. In practice, manual and automated
techniques are utilized to classify blood cells, including micro-
scopic evaluation, automated hematology devices, and electro-
optical analyzers [6]. However, these methods are often ex-
pensive and require specialized personnel to operate. In recent
years, deep learning has emerged as a way to aid with medical
image processing [14], and can provide a faster and cheaper al-
ternative to blood cell identification tasks. In order to train high
performing deep learning models, an important element is the
availability of large amounts of high quality data. However, it
is often difficult to access high quality labeled data for medical
diagnosis [2]. Unlabeled data, on the other hand, is more ac-
cessible and can be easier to obtain. With these considerations,
this project seeks to build a model that would be able to utilize
large amounts of unlabeled data to condition more efficient fine-
tuning on small labeled datasets. Another exploration is if the
addition of extra information (through the use of segmentation
masks) can aid the model in more effective learning.

1.1. Datasets

The pRCC [4] and CAM16 [8] datasets are used as unlabled
data to pretrain the model. Afterwards, the Raabin-WBC [6] is
used to further finetune the model and evaluate it’s classfication
accuracy on the 5 white blood cell types, Basophil, Eosinophil,
Lymphocyte, Monocyte, and Neurophil. Furthermore, for the
WBC dataset, annotated masks are given for a small subset of
the images. This is included in an additional finetuning step to
analyze any performance gains to the model when given this
additional information. The whole dataset (WBC100) is further

Figure 1: Statistics for each of the WBC100, WBC50, WBC10, and WBC1
datasets. All images are 575x575x3 pixels.

Figure 2: Statistics for the CAM16 and pRCC datasets. CAM16 includes im-
ages of size 384x384x3 pixels and pRCC images are 2000x2000x3 pixels

divided into the sub-datasets WBC50, WBC10, and WBC1,
which are separately used to train the model. Details of the
datasets [7] are shown in Figure 1 and Figure 2.

1.2. Data Augmentation
In order to faciliate more effective learning, the data is aug-

mented before the pretraining and finetuning step. Due to the
variable sized images across all datasets, a standard size was
chosen as 512x512x3 pixels for all images. All images in
CAM16 are upscaled, all images in WBC are downscaled, and
all images in pRCC are cropped. The motivation behind crop-
ping was to preserve as much information as possible of the
high fidelity images in pRCC dataset for use in the pretrain-
ing step. The mean and standard deviation of each channel of
the image was computed for each dataset (WBC100, CAM16,



pRCC), and all images within the dataset were normalized be-
fore training. In the pretraining step, all images from pRCC and
CAM16 are merged into a single dataset and fed to the model
in batches. A random rotation between ±180 degrees was ap-
plied to all images. Images from pRCC were sampled with a
4x greater probability than CAM16, since the effective size of
each pRCC image was much greater. By introducing this factor
of 4, the hope was to sample more of the features within the
high fidelity pRCC data.

For finetuning, all images from WBC were also augmented
using a random rotation between ±180, while the test set only
received normalization.

For finetuning with masks, the entire WBC dataset was used,
and all images with masks were overlayed such that the original
image pixels remained within the mask while all masked out ar-
eas were replaced with normalized random noise. An example
of this augmentation is shown in Figure 3

Figure 3: The masking data augmentation

2. Model Description

In order to effectively perform classification on images, deep
learning models usually try to learn the underlying features
within each image. This is often done through methods of first
reducing the dimensionality of the image. A proven method
for dimensionality reduction while still preserving features is
the auto-encoder [1], which utilizes a neural network to learn a
compact representation of the higher dimensional feature space.
A scan of recent literature shows the success of many types
of auto-encoders, with one of the most widely used being the
Vector Quantized Variational Autoencoder (VQ-VAE) [10]. It’s
success has been seen in instances such as state of the art latent
diffusion models, such as Stable Diffusion [11] and Wuerstchen
[9]. Both of these models utilize a variant of the VQ-VAE to
first compress an image into a latent space, and later recon-
struct an image from the latent representation. The Wuerstchen
[9] model takes this a step further, by first utilizing a VQGAN
[3] to compress the image into a latent space, then utilizes a
diffusion UNET to compress the latent into an even smaller di-
mensional space. The model is then able to train a text-guided
generative model to generate latents at the smallest level, mas-
sively reducing training time. This latent can then be decoded
twice to obtain a high fidelity image.

Motivated by this, this projects explores the possibility of uti-
lizing a stack of VQ-VAEs to attempt to encode images to a very
small latent space, which is many orders times smaller than the

image space. If such a set of features can be learned effectively,
then classification can be performed at the latent level, which
will present a large decrease in the amount of redundant fea-
tures. A non-linear, feed forward network can then be trained
to classify the latent features. In this project, 3 VQ-VAEs are
utilized in conjunction to encode a 512x512x3 image into a la-
tent representation of size 4x8x8, and the model will be termed
as a Stacked Vector Quantized Variational Autoencoder (SVQ-
VAE).

2.1. VQ-VAE

The VQ-VAE [10] differs from traditional VAEs through the
use of a codebook for vector quantization. The encoder E per-
forms a non-linear mapping of the input space x to a latent space
z = E(x). The model also contains a learned codebook of K la-
tent vectors of fixed size, ek, k ∈ 1, ...,K. The encoded vector is
then quantized by taking the value of the closest vector in the
codebook

Quantize[E(x)] = ek, where k = argmin j||E(x) − e j|| (1)

The decoder D then decodes the latent vector back to the
original space x̃ = D(e). The encoder and decoder are opti-
mized via the objective function given in [10], where sg[·] refers
to a stop gradient to the argument, e is the closest quantization
vector in the codebook, and β is a hyperparameter:

L(x,D(e)) = ∥x −D(e)∥22 + β
∥∥∥sg[e] − E(x)

∥∥∥2
2 (2)

The codebook vectors are learned via an exponential mov-
ing average, as described in [10]. The first term is defined as
the reconstruction loss, which measures the mean squared er-
ror between the decoded image and the original image. The the
second term is defined as the latent loss, which measures the
mean squared distance between the each encoding to its closest
quantization vector. The code implementation of the VQ-VAE
in the project adapts the open-sourced implementation provided
by [12].

2.2. Architecture

Building off of the VQ-VAE architecture, this project com-
bines multiple VQ-VAEs into a Stacked Vector Quantized Vari-
ational Autoencoder (SVQVAE) model. Three VQ-VAEs are
used, and thus define 3 levels of the model. The architecture of
each VQ-VAE is composed of an encoder and a decoder, which
encode at two differing hierachies. The bottom encoder is com-
posed of 3 convolutional blocks with kernels of size 4, 4, 3,
stride of 2, 2, 1, and padding of 1, 1, 1 respectively. This is
followed by multiple residual blocks each consisting of a con-
volutional layer with kernel size 3, padding 1, and a convolu-
tional layer with kernel size 1. The bottom encoder encodes an
input of shape C × N × N into an embedding of shape k × N/4
× N/4, where C is the number of channels of the input and k
is the dimension of each quantization vector in the codebook.
The top encoder further reduces the dimensionality by apply-
ing another 2 convolutions with kernel sizes 4, 3, stride of 2, 1,
and padding of 1, 1 respectively to the bottom embedding, to
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encode a k × N/8 × N/8 top embedding block. The use of two
layers of differing embedding sizes enhances the model’s abil-
ity to capture different levels of detail at each of the two levels
[10]. For implementation of SVQVAE, the two embeddings are
then merged, by first upsampling the bottom top embedding via
a single transposed convolution with kernel size 4, stride of 2,
and padding of 1, then stacked such that the final embedding is
of size 2k × N/4 × N/4.

In the decoding step, the embedded encoding is passed
through a series of residual blocks and transposed convolutions
in the decoder to obtain a reconstruction of the original input.

The SVQVAE stacks three of these VQ-VAEs together, such
that the embedding from one layer is then fed to the encoder
of the next VQ-VAE, and then the next. For the datasets in
the project, the SVQVAE encodes an image of size 512×512×3
into an embedding of 2k × 8 × 8.

The model architecture is shown in Figure 4.

Figure 4: The SVQVAE architecture, with an input image dimension of
512x512x3 and a codebook vector dimension of 2.

3. Experimentation and Results

Various architectures and hyperparameters of the model were
tested first through pretraining on the unlabeled dataset. Within
the scope of these tests, the overall best model in terms of per-
fomance and size was selected for continued training on WBC
datasets.

3.1. Pretraining

First, the model was pretrained from scratch on the unla-
beled, joint pRCC and CAM16 dataset. The best performing
SVQVAE model consists of 3 VQ-VAEs, each with 128 chan-
nels in the encoder/decoder, 2 residual blocks each in the en-
coder/decoder, 32 channels for each residual block, codebook
vectors of dimension 2, 512 total codebook vectors, and decay
of 0.99 for the codebook exponential update. The total number
of parameters for this model is 3054644.

Figure 5: Plots showing the latent loss and reconstruction loss for each level of
the SVQVAE during finetuning

During the pretraining stage, the loss objective for VQ-VAE
(equation 2) is used to train each layer, with β set at 0.25. The
model is trained in a staggered approach, using a staggering
epoch of 5. First the reconstruction loss and latent loss is only
calculated for the first VQ-VAE layer, and the weighted sum is
back-propagated through the network. After training for the
staggered number of epochs, the model is deepened by one
layer, and the corresponding reconstruction and latent loss is
calculated for that layer and back-propagated along with the re-
construction and latent losses for the previous layers. The pre-
training reconstruction and latent losses for each layer of SVQ-
VAE is shown in Figure 5.

The model was pretrained with a batch size of 24 for 50
epochs. AdamW optimizer is used with a learning rate of
1.5e−4, weight decay of 0.05, and betas (0.9, 0.95). A cosine
annealing scheduler is used. These hyperparameters were cho-
sen from reference to [5].

The model checkpoint after 50 is saved and used for the
following training steps. The reconstructions achieved by the
model from each level is visualized in Figure 6 for a random
sample from each of the three datasets.

3.2. Finetuning
To enable the model to perform supervised classification, the

smallest latent embedding from SVQVAE is flattened and fed
through 3 feed forward layers, and then through a softmax. The
features space is first fed through a layer of 2 × the flattened em-
bedding dimension, then to a linear layer of size 64 and finally
to a linear layer of size 5.

At each step, 3 separate loss functions are computed, the clas-
sification loss, which is the cross entropy between the predicted
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Figure 6: Visualization of the reconstructions produced by the model on a ran-
dom image from each dataset after 50 epochs of pretraining on CAM16 and
pRCC datasets. The random image is taken from CAM16 (top), pRCC (mid-
dle), and WBC100 (bottom)

labels and the ground truth, as well as the reconstruction and
latent losses, which are defined for the smallest VQ-VAE level.
The classification loss is backpropagated every step, while the
reconstruction and latent losses are backpropagated every N
epochs, with N = 2. Through experimentation over a few tri-
als, this method proved to be the most effective in stablilizing
and converging to a good training accuracy. Experiments were
also carried out where all the losses were optimized each epoch,
which resulted in slower convergence, as well as only optimiz-
ing classification loss, which resulted in the model being unable
to learn.

Finetuning is performed on all subsets of the WBC dataset
from the weights of the pretrained model. For finetuning, each
sub-dataset (WBC100, WBC50, WBC10, WBC1) and classes
are weighed such that there is an equal probability of sampling
from each class. Finetuning was performed at 100 epochs with
a batch size of 24. AdamW optimizer is used with a learning
rate of 1.5e−4, weight decay of 0.05, and betas (0.9, 0.95), with-
out a scheduler.

The resulting statistics and loss are summarized for WBC100
(Figure 9), WBC50 (Figure 10), WBC10 (Figure 11), and
WBC1 (Figure 12).

The best training and testing accuracies of the finetuned
model on each sub-dataset are summarized in Figure 7.

Figure 7: Comparisons of the training and testing accuracies for each of
WBC100, WBC50, WBC10, and WBC1 datasets. All were trained for 100
epochs and the best accuracy taken.

3.3. Additional Information

Given that masks are also provided for a portion of the WBC
dataset, they are additionally utilized to see if model perfor-
mance can be improved. All 4 datasets are finetuned from the
pretraining checkpoint, this time on the mask dataset. At each
step, the same loss is calcuated as in the finetuning step, except
with the addition of a feature loss, which computes the mean
square error between the latent embedding of the input image
with masking xm, and without masking x.

Lfeature = MSE[E(xm),E(x)] (3)

The motoviation behind this loss is to give information to the
network that only the features within the mask area are impor-
tant towards classification.

The model is finetuned given the masks from each dataset
with the same hyperparameters as the non-mask finetuning. The
resulting best training and testing accuracies are summarized in
Figure 8.
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Figure 8: Comparisons of the training and testing accuracies for each of
WBC50, WBC10, and WBC1 datasets. All were trained for 100 epochs with
masking in the dataset and use of the feature loss. The best accuracy is taken.

4. Discussion and Future Work

This project investigated the use of a Stacked Vector Quan-
tized Variational Autoencoder for pretraining and classification
of the WBC white blood cell dataset. Results from the exper-
iments show that the method is quite effective, with the ca-
pability to achieve above 97% accuracy on the WBC test set.
The model is able to effectively leverage large amounts of un-
labeled data to first pretrain, which allow it to be effective in
self-supervised learning. Even with a high compression ratio of
3072 from image space to the smallest latent space (512 × 512
× 3 to 8 × 8 × 4), the model is still able to extract meaningful
features from the compressed space to accurately perform clas-
sification. For the scope of this project, extensive hyperparam-
eter tuning was not performed, but it is very likely that model
performance can improve with slight optimization of hyperpa-
rameters.

The model also shows good capability to learn on very small
amounts of data without overfitting, as shown in the experi-
ments with the WBC10 and WBC1 datasets. Especially for the
case of WBC1, as seen from the confusion matrix in Figure 12,
even with only a single example of Basophil in the training set,
the model is able to generalize well and perform well on the test
dataset. A hypothesis is that by training the model to perform
reconstruction from such a small latent space, the model must
learn a good set of general features, which also prevents over-
fitting in the classfication task. Thus, when these two losses are
jointly optimized, the model can achive good performance from
very few samples.

When additional information is introduced for the model, a
slight improvement is noticed. This is seen from the compar-
ison of Figure 7 and Figure 8. Training accuracy is higher
for training on the masked data for WBC1, WBC10, and
WBC50 datasets, while testing accuracy is higher for WBC50
and WBC1 dataset. This shows potential for the method to be
further explored, such as designing a more sophisticated fea-
ture loss, such as comparing the probability distributions of
the latent embeddings through metrics such as KL divergence
[13]. Further optimizations are likely to be achieved through
reweighing the loss weights and optimization of the losses fol-
lowing different schedules.

5. Summary and conclusions

Through experiments with the WBC, CAM16, and pRCC
datasets, the SVQVAE model shows the potential for perform-
ing fast and accurate identification of images in the medical do-
main. The strengths of the model include its very small size of

only 3.1M parameters, its capabilities to utilize large amounts
of unlabeled data to perform pretraining, as well as the potential
to optimize its performance through additional, currated data.
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Figure 9: Statistics for finetuning of WBC100. Tops shows the reconstruction
loss (left), latent loss (middle), and classification loss (right). Middle shows
training accuracy (left) and testing accuracy (right). Bottom shows the confu-
sion matrix computed for the WBC test set on the best checkpoint

Figure 10: Statistics for finetuning of WBC50. Tops shows the reconstruction
loss (left), latent loss (middle), and classification loss (right). Middle shows
training accuracy (left) and testing accuracy (right). Bottom shows the confu-
sion matrix computed for the WBC test set on the best checkpoint

Figure 11: Statistics for finetuning of WBC10. Tops shows the reconstruction
loss (left), latent loss (middle), and classification loss (right). Middle shows
training accuracy (left) and testing accuracy (right). Bottom shows the confu-
sion matrix computed for the WBC test set on the best checkpoint

Figure 12: Statistics for finetuning of WBC1. Tops shows the reconstruction
loss (left), latent loss (middle), and classification loss (right). Middle shows
training accuracy (left) and testing accuracy (right). Bottom shows the confu-
sion matrix computed for the WBC test set on the best checkpoint
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